Project Aim

This project aimed to measure visual outcomes of people implanted with a bionic eye using a new method called Local Background Enclosure (LBE) compared to an older method called Lanczos2. Testing would be compared both in a lab and in the real world (on a street). The study also aimed to test the safety and effectiveness of the bionic eye 4 years after it was implanted on the project participants.

Project Results and Impact

The project investigated the effectiveness of a new visual processing method, called Local Background Enclosure (LBE), in helping people who had been implanted with bionic eyes to navigate obstacles in both a controlled laboratory environment and a real-world setting. The results showed that LBE performed better than the traditional intensity-based method, called Lanczos2, for detecting low-contrast obstacles, and was also able to detect high-contrast obstacles as well. LBE also outperformed Lanczos2 for detecting objects such as mannequins, overhanging boxes, and large bins, while Lanczos2 was better for detecting ground-based boxes.

In the real-world environment, the bionic eye was also able to detect objects more effectively than a cane or relying on the user’s own body senses. Participants reported that the device helped them navigate their environment with greater confidence and awareness of their surroundings.

The study also monitored the safety and functionality of the bionic eye over a 4-year period, and found that it remained stable and reliable for long-term use, with no adverse impact on participants.

These findings are important for optimising the visual processing strategy and establishing the real-world effectiveness of the Australian bionic eye. The depth-based vision processing method could potentially be incorporated into the bionic eye system to improve navigation. Overall, the study demonstrated the potential of the bionic eye to help people with visual impairments navigate their environment safely and effectively.

Published peer reviewed journal articles

Lauren Moussallem; Lisa Lombardi; Matthew A. Petoe; Rui Jin; Maria Kolic; Elizabeth K. Baglin; Carla J. Abbott; Janine G. Walker; Nick Barnes; Penelope J. Allen, Navigational outcomes with a depth-based vision processing method in a second generation suprachoroidal retinal prosthesis, ARVO, April 23-27 2023, New Orleans, USA. 

Webinar 

To watch a webinar presentation about this research and previous research on the Bionic Eye leading up to this project, click here.

Chief investigator:
Associate Professor Penelope Allen
Centre for Eye Research Australia, Melbourne 

Co-investigator/s:

Dr Janine Walker, CSIRO

Dr Matthew Petoe, The Bionics Institute, Melbourne

Professor Nick Barnes, Australian National University, Canberra

Dr Carla Abbott, Centre for Eye Research Australia, Melbourne

Grant awarded:
$39,862 (2022)

Research Impact Reports

RNA base editing strategies as potential therapeutic of inherited retinal dystrophies

Project Aim This study aimed to use a new genetic...

Neuroprotective effect of SAHA in Retinitis Pigmentosa. Do time and frequency matter?

Project Aim Retinitis Pigmentosa (RP) is a genetic, blinding retinal...

Improving Sensory Substitution Low Vision Devices Through Novel Software Adaptations

Project Aim To investigate the efficacy of sensory substitution devices...

Looking for disease causing mutations in families with dominant RP pedigrees

Project Aim Retinitis pigmentosa (RP) is a debilitating eye disease...