
Microglia and retinal degenerations: Identifying key modulators of inflammation as 

therapeutic targets 

 

The most common cause of blindness in Australia is Age-Related Macular Degeneration 

(AMD), costing the Australian economy ~5 billion dollars annually [1] and ~350 billion 

dollars globally. Current projections indicate that by 2030, 1.7 million people in Australia 

will suffer vision loss due to AMD, with a major contribution being the current lack of 

treatment options available for the more prevalent atrophic or ‘dry’ form of the disease. AMD 

shares a number of pathophysiological states with other ageing neurodegenerative diseases 

such as Alzheimer’s and Parkinson’s disease, including: i) disease prevalence, which 

increases with age; and ii) neuroinflammation, in which activated microglia, the resident 

immune cells of the central nervous system (CNS), and blood-borne macrophages are 

recruited to areas of tissue damage. 

Dysregulation of microglia and macrophages is a key pathogenic mechanism underlying 

many age-related neurodegenerative diseases, highlighting the importance of 

understanding how these cells respond to ageing and stress.  

We have previously demonstrated in both human AMD tissue and animal models that 

resident microglia and/or recruited macrophages, are key players in the progression of retinal 

degenerations [2-4], and contribute to AMD pathogenesis (reviewed in [5]). We have 

demonstrated that reducing microglia/macrophage migration and activation [6] correlates 

with increased photoreceptor survival and retinal function [7-9]. Following the breakthrough 

discovery that microglia have a distinct embryonic origin [10] compared to recruited 

macrophages, the question remains as to whether differences in microglia and macrophage 

cellular origin influence their responses to stress and their contributions to progressive 

degeneration.  

Funding provided by Retina Australia has allowed us to investigate the role that both 

microglia and macrophages play in response to retinal degenerations, and identify microRNA 

(miRNA) as a key player in the regulation of these immune cells. miRNA are small 

endogenously expressed non-coding RNA molecules that post-transcriptionally regulate gene 

expression (reviewed in [11]). They are abundant in the CNS (reviewed in [12]), play a key 

role in regulating inflammation (reviewed in [13]), and are involved in the progression of 

retinal degenerations [14]. Several miRNAs have been implicated in the regulation of 

inflammation, including miR-124 and miR-155, which have been suggested as possible 

therapeutic targets in other neurodegenerative diseases such as Alzheimer’s and Parkinson’s 

[15-17]. We have demonstrated that miRNA dysregulation is a key feature of retinal damage, 

using a model of photo-oxidative-induced retinal degeneration (Figure 1). 

 

Specifically the funding has enabled us to: 

1. Establish a culturing technique for retinal microglia in order to study their changes in 

response to stress and damage (Figure 2). 

a. This work is now complete and a manuscript is being prepared for publication 

in late 2019. 



2. Establish a reporter strain to allow us to visually identify microglia and macrophages 

[18], allowing for further dissection of the miRNA differences between microglia and 

macrophages, especially those pertaining to inflammatory pathways (Figure 3). 

a. This work is ongoing and further funding has been obtained to complete this 

project. 

3. Demonstrate that miR-124 provides protection against retinal degenerations and that 

miR-124 is pivotal in maintaining normal retinal homeostasis. 

a. This project is complete and a manuscript is being prepared for publication. 

4. Demonstrate that miR-155 is differentially regulated in microglia and macrophages in 

response to retinal damage. Reducing the expression of miR-155 can reduce retinal 

inflammation and degeneration (Figure 3). 

a. Work is almost complete and is being prepared for publication. 
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Figure 1. Retinal miRNA changes following photo-oxidative damage (PD). A heat map 

depicting the expression changes of the top 80 differentially expressed miRNA between 

control (dim-reared) and photo-oxidative damaged retinas. Strong correlation was observed 

between the samples of the two variables (green indicates decreased expression, red indicates 

increased expression). 



 

Figure 2. Culturing of primary CD11b+ retinal microglia. A-D: Microglia were isolated from 

retinas using FACS, and were supplemented with GM-CSF and M-CSF for 4 weeks. 

Representative images show cells at day 1 (A-B), 2 weeks (C) and 4 weeks (D) after 

isolation. E-F: Immunolabelling using IBA1 and CD11b markers for microglia/macrophage 

populations isolated from mouse (E) and human (F) retinas. Scale bar is 50µm (25µm for B). 

 

Figure 3. A-C: Establishment of a fate-mapping reporter strain of microglia and 

macrophages (red RFP+, A) to distinguish microglia (yellow RFP+ YFP+, C) vs macrophages 

(green YFP+, B). D: FACS isolation plot of YFP+/RFP+ cells show a clear distinction 

between the microglia and macrophage populations in the retina. E: miR-155 expression was 

significantly different between microglia and macrophage populations. Scale bar is 100µm. 
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